Send to

Choose Destination
Neurosci Lett. 2000 Jan 7;278(1-2):5-8.

Novel strategies for opposing murine microglial activation.

Author information

The Roskamp Institute, University of South Florida, Tampa 33613, USA.


Pathologic microglial activation is believed to contribute to progressive neuronal damage in neurodegenerative diseases by the release of potentially neurotoxic agents, such as pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha). Using cultured N9 microglial cells, we have examined the regulation of TNF-alpha following endotoxic insult with lipopolysacharide (LPS), focusing on the role of the pro-inflammatory phospholipase A2/mitogen activated protein kinase/arachidonic acid/cyclo-oxygenase-2 cascade and the nitric oxide/cGMP pathway. Data show that various inhibitors of the PLA2 cascade markedly inhibit LPS-induced TNF-alpha release, supporting a key role of this pathway in the regulation of microglial activation. We also investigated the putative effects of cGMP-elevating agents on blocking microglial activation induced by LPS. Data show that each member of this class of cGMP-elevating compounds that we employed opposed microglial TNF-alpha release, suggesting that strengthening intracellular cGMP signaling mitigates against microglial activation. Taken together, our results suggest novel strategies for reducing microglial activation.

[Indexed for MEDLINE]

MeSH terms, Substances

MeSH terms


Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center