Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Jan 21;275(3):2147-56.

Activation of the Stat3 signaling pathway is required for differentiation by interleukin-6 in PC12-E2 cells.

Author information

1
Departments of Physiology and Biophysics, College of Medicine, University of California, Irvine, California 92697, USA.

Abstract

The role of signal transducer and activator of transcription (STAT) signaling pathways in the interleukin-6 (IL-6)-induced morphological differentiation of PC12-E2 cells was assessed using wild type and dominant negative mutants of Stat1 and Stat3, containing Tyr --> Phe (YF), Ser --> Ala (SA), and the double mutations (DM), respectively. FS3-YF or FS3-DM markedly inhibited the IL-6-induced response, but overexpression of FS3-SA caused only a modest inhibition. Expression of all Stat3 mutants had no effect on NGF-induced neurite outgrowth. Overexpression of wild type Stat1 protein inhibited IL-6 activated DNA binding complexes containing Stat3 homodimers, which may explain the partial negative effect of Stat1 on IL-6-induced neurite outgrowth. Specificity of these STAT constructs was confirmed using luciferase reporter gene assays, which showed that IL-6-activated transcription was blocked by expression of FS3-YF and FS3-DM and that FS1 enhanced the interferon gamma-activated transcription. Thus, in PC12-E2 cells, Stat3 homodimers are preferentially activated by IL-6, indicating a role for Stat3 in the regulation of cellular differentiation. Furthermore, IL-6 induced robust neurite outgrowth in PC12-E2 cells expressing dominant negative forms of RAS or SHC or in cells pretreated with the mitogen-activated protein kinase mitogen-activated protein kinase kinase inhibitor, PD98059. Thus, activation of the Stat3 signaling pathway, but not RAS/ERK dependent pathways, is essential for differentiation of PC12-E2 cells by IL-6.

PMID:
10636920
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center