Format

Send to

Choose Destination
J Clin Endocrinol Metab. 2000 Jan;85(1):224-30.

Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man.

Author information

1
Department of Medicine, Vanderbilt University School of Medicine, and Nashville Veterans Administration/Juvenile Diabetes Foundation Diabetes Research Center, Tennessee 37232, USA. steve.davis@mcmail.vanderbilt.edu

Abstract

Significant, sexual dimorphisms exist in counterregulatory responses to commonly occurring stresses, such as hypoglycemia, fasting, and cognitive testing. The question of whether counterregulatory responses differ during exercise in healthy men and women remains controversial. The aim of this study was to determine whether a sexual dimorphism exists in neuroendocrine, metabolic, or cardiovascular responses to prolonged moderate exercise. Sixteen healthy (eight men and eight women) subjects matched for age (28+/-2 yr), body mass index (22+/-1 kg/m2), nutrient intake, and spectrum of physical fitness were studied in a randomized fashion during 90 min of exercise on a cycle ergometer at 80% of their anaerobic threshold (approximately 50% VO2 max). Respiratory quotient and oxygen consumption relative to body weight were identical in men and women. Glycemia was equated (5.3+/-0.2 mmol/L) during exercise via an exogenous glucose infusion. Gender had significant effects on counterregulatory responses during exercise. Arterialized epinephrine (1.05+/-0.2 vs. 0.45+/-0.04 nmol/L), norepinephrine (9.2+/-1.1 vs. 5.8+/-1.1 nmol/L), and pancreatic polypeptide (52+/-6 vs. 37+/-6 pmol/L) were significantly (P<0.01) increased in men compared to women, respectively. Plasma glucagon, cortisol, and GH levels responded similarly in men and women. Insulin values were higher at baseline in men and fell by a greater amount to reach similar levels during exercise compared to those in women. Endogenous glucose production, measured with [3-3H]glucose was similar in men and women. Carbohydrate oxidation was significantly increased in men relative to women (21.2+/-2 vs. 15.6+/-2 mg/kg fat free mass x min; P<0.05). Despite reduced sympathetic nervous system (SNS) drive, lipolytic responses were increased in women. Arterialized blood glycerol (215+/-30 vs. 140+/-20 micromol/L), beta-hydroxybutyrate (54+/-9 vs. 25+/-10 micromol/L), and plasma nonesterified fatty acids (720+/-56 vs. 469+/-103 micromol/L) were significantly (P<0.01) increased in women. In keeping with increased SNS activity, systolic blood pressure and mean arterial pressure were significantly increased (P<0.01) in men. In summary, this study demonstrates that a significant sexual dimorphism exists in neuroendocrine, metabolic, and cardiovascular counterregulatory responses to prolonged moderate exercise in man. We conclude that during exercise, men have increased autonomic nervous system (epinephrine, norepinephrine, pancreatic polypeptide), cardiovascular (systolic, mean arterial pressure) and certain metabolic (carbohydrate oxidation) counterregulatory responses, but that women have increased lipolytic (glycerol, nonesterified fatty acids) and ketogenic (beta-hydroxybutyrate) responses. Women may compensate for diminished SNS activity during exercise by increased lipolytic responses.

PMID:
10634391
DOI:
10.1210/jcem.85.1.6328
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center