Format

Send to

Choose Destination
J Allergy Clin Immunol. 2000 Jan;105(1 Pt 1):126-33.

Chemokine production by the BEAS-2B human bronchial epithelial cells: differential regulation of eotaxin, IL-8, and RANTES by TH2- and TH1-derived cytokines.

Author information

1
Department of Pediatrics, Mie National Hospital, Tsu, Japan.

Abstract

BACKGROUND:

Bronchial epithelial cells produce many types of chemokines and may contribute to lung inflammation by recruiting inflammatory cells. The CC chemokine eotaxin is a potent, eosinophil-specific chemoattractant that has been detected in the bronchial epithelium of patients with asthma.

OBJECTIVES:

The aim of this study was to investigate the regulatory mechanisms of chemokine production from bronchial epithelium by inflammatory cytokines, especially T(H)2- and T(H)1-derived cytokines, in bronchial asthma.

METHODS:

BEAS-2B human bronchial epithelial cells were cultured with TNF-alpha, IL-4, IL-13, and IFN-gamma alone or in combination, after which supernatants were assayed for eotaxin, IL-8, and RANTES proteins with ELISA. Reverse transcription-PCR was also performed.

RESULTS:

TNF-alpha induced production of eotaxin, IL-8, and RANTES in a concentration-dependent manner. Both IL-4 and IL-13 synergistically enhanced TNF-alpha-induced eotaxin production, whereas IL-8 production induced by TNF-alpha was significantly down-regulated by the T(H)2-derived cytokines. IFN-gamma, a T(H)1 cytokine, counteracted the enhancing effects of IL-4 and IL-13 on eotaxin production. RANTES production by TNF-alpha was not affected by IL-4 and IL-13 but was markedly enhanced by IFN-gamma.

CONCLUSIONS:

These results suggest that T(H)2 cytokines are involved in preferential recruitment of eosinophils in bronchial asthma by enhancing eotaxin and reducing IL-8 production from bronchial epithelial cells and that T(H)1 cytokines counteract the effects of T(H)2 cytokines by reducing eotaxin production.

PMID:
10629462
DOI:
10.1016/s0091-6749(00)90187-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center