Format

Send to

Choose Destination
J Med Microbiol. 2000 Jan;49(1):103-10.

Evolution of chloramphenicol resistance, with emergence of cross-resistance to florfenicol, in bovine Salmonella Typhimurium strains implicates definitive phage type (DT) 104.

Author information

1
Station de Pathologie Aviaire et Parasitologie, Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, Monnaie, France.

Abstract

The prevalence of resistance to florfenicol, a phenicol drug newly introduced in veterinary therapy, was determined in 86 chloramphenicol-resistant Salmonella Typhimurium isolates from cattle collected during 1985-1995. All were highly resistant to chloramphenicol (MICs > or = 128 mg/L) and 38 were simultaneously resistant to florfenicol (MICs >16 mg/L) and to beta-lactam agents, spectinomycin, streptomycin, sulphonamides and tetracyclines. The isolates susceptible to florfenicol harboured the chloramphenicol acetyl transferase gene, cat of type I. All the florfenicol-resistant isolates harboured the floR resistance gene and the characteristic multiple resistance genetic locus, previously characterised in a S. Typhimurium DT104 strain and identified by a multiplex PCR. Plasmid profiles and ribotype patterns were determined for all the isolates. The florfenicol-resistant isolates were grouped into the same ribotyping pattern and presented similar plasmid profiles, whereas the florfenicol-susceptible isolates showed a wider genetic diversity that is usual for S. Typhimurium. Thus, the florfenicol-resistant isolates could represent a clonal cluster, closely related to, if not of DT104 phage type, which appeared in 1989 and is now predominant within chloramphenicol-resistant S. Typhimurium. The multiplex PCR provided a useful tool to survey further evolution of multiresistant S. Typhimurium strains.

PMID:
10628832
DOI:
10.1099/0022-1317-49-1-103
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center