Format

Send to

Choose Destination
Mol Endocrinol. 2000 Jan;14(1):183-93.

TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1.

Author information

1
Department of Pharmacology, University of Toronto, Ontario, Canada.

Abstract

TRH (thyroliberin) is a tripeptide (pGlu-His-ProNH2) that signals via G protein-coupled receptors. Until recently, only a single receptor for TRH was known (TRH-R1), but two groups identified a second receptor, TRH-R2. We independently discovered TRH-R2. Using an extensive set of TRH analogs, we found no differences in TRH-R1 and TRH-R2 binding or in acute stimulation of signaling. TRH-R2 was more rapidly internalized upon binding TRH and exhibited a greater level of TRH-induced down-regulation than TRH-R1. During prolonged exposure to TRH, cells expressing TRH-R2 exhibited a lower level of gene induction than cells expressing TRH-R1. TRH-R2 receptor mRNA was present in very discrete nuclei and regions of rat brain. A major mRNA transcript for TRH-R2 was seen in the cerebral cortex, pons, thalamus, hypothalamus, and midbrain with faint bands found in the striatum and pituitary. The extensive distribution of TRH-R2 in the brain suggests that it mediates many of the known functions of TRH that are not transduced by TRH-R1. The variations in agonist-induced internalization and down-regulation/desensitization, and anatomic distribution of TRH-R2 compared with TRH-R1, suggest important functional differences between the two receptors.

PMID:
10628757
DOI:
10.1210/mend.14.1.0407
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center