Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2000 Jan 7;267(1):356-61.

Synthesis and biochemical evaluation of novel inhibitors of aromatase (AR) using an enhanced representation of the active site of AR derived from the consideration of the reaction mechanism.

Author information

1
School of Applied Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, United Kingdom. S.AHMED@KINGSTON.AC.UK

Abstract

A novel molecular modeling study, involving inhibitors bound to the iron of cytochrome P450 heme, is described for nonsteroidal inhibitors of aromatase (AR). Study of compounds such as aminoglutethimide (AG) suggests that it utilizes hydrogen bonding group(s) at the active site which would usually H-bond to the steroid C(17) carbonyl group. Interaction between AG's carbonyl groups and the area of the active site corresponding to the substrate C(3)==O group is not possible due to steric interaction. Possible reasons for the difference in activity of enantiomers of alternative inhibitors is also suggested, as well as the mode of action of the new AR inhibitor, Arimidex-whose inhibitory activity previously has not been rationalized. The present study proposes that it is able to use hydrogen bonding groups at the active site corresponding to the steroid C(17)==O and C(3)==O area, contradicting a previous study where it is postulated that azole-type compounds only use polar groups at the active site corresponding to the steroid D ring. Using the hypotheses of the modeling study, we designed and synthesized a number of novel (enantiomerically pure) inhibitors, which upon biochemical evaluation were found to be good inhibitors; the N-nonyl derivative of the S-enantiomer was found to possess 39% inhibition at 100 microM inhibitor concentration (using androstenedione as the substrate), under similar conditions, and AG possessed 20% inhibition.

PMID:
10623624
DOI:
10.1006/bbrc.1999.1809
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center