Send to

Choose Destination
Insect Biochem Mol Biol. 1999 Dec;29(12):1075-86.

Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor.

Author information

Department of Biochemistry, Kansas State University, Manhattan 66506, USA.


A family of hemolymph peptides was previously identified in several lepidopteran insects, which exhibited multiple biological activities including rapid paralysis, blockage of growth and development, or stimulation of plasmatocyte spreading and aggregation. We synthesized Manduca sexta paralytic peptide 1 (PP1) and found that after it was injected into larvae, bleeding from wounds was dramatically reduced. PP1 also stimulated spreading and aggregation behavior of M. sexta plasmatocytes in vitro. Stimulation of plasmatocyte aggregation and adherence to the body wall may explain a decrease observed in the number of circulating plasmatocytes after injection of PP1. Such aggregates might rapidly form plugs in wounds to prevent bleeding. We cloned a cDNA for a Manduca paralytic peptide precursor, using polymerase chain reactions and cDNA library screening. The active 23-residue PP2 peptide encoded by this clone is at the carboxyl-terminal end of a precursor protein predicted to be 107 amino acid residues long after cleavage of a secretion signal peptide. Active PP2 was produced by processing of recombinant proPP2 by bovine factor Xa. A single proPP2 mRNA was present in fat body but not in hemocytes. The level of this mRNA was not affected by injection of bacteria into larvae. We produced recombinant proPP2 in Escherichia coli and used this protein to produce an antiserum. The antiserum detected proPP2 in plasma and was used to observe rapid proteolytic processing of proPP2 after hemolymph collection.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center