Format

Send to

Choose Destination
Curr Biol. 1999 Dec 2;9(23):1382-91.

Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns.

Author information

1
Laboratory of Molecular Biology, Howard Hughes Medical Institute, University of Wisconsin, Madison 53706, USA.

Abstract

BACKGROUND:

Animal melanin patterns are involved in diverse aspects of their ecology, from thermoregulation to mimicry. Many theoretical models have simulated pigment patterning, but little is known about the developmental mechanisms of color pattern formation. In Drosophila melanogaster, several genes are known to be necessary for cuticular melanization, but the involvement of these genes in melanin pattern evolution is unknown. We have taken a genetic approach to elucidate the developmental mechanisms underlying melanin pattern formation in various drosophilids.

RESULTS:

We show that, in D. melanogaster, tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) are required for melanin synthesis. Ectopic expression of TH, but not DDC, alone was sufficient to cause ectopic melanin patterns in the wing. Thus, changes in the level of expression of a single gene can result in a new level of melanization. The ontogeny of this ectopic melanization resembled that found in Drosophila species bearing wing melanin patterns and in D. melanogaster ebony mutants. Importantly, we discovered that in D. melanogaster and three other Drosophila species these wing melanin patterns are dependent upon and shaped by the circulation patterns of hemolymph in the wing veins.

CONCLUSIONS:

Complex wing melanin patterns are determined by two distinct developmental mechanisms. Spatial prepatterns of enzymatic activity are established late in wing development. Then, in newly eclosed adults, melanin precursors gradually diffuse out from wing veins and are oxidized into dark brown or black melanin. Both the prepatterning and hemolymph-supplied components of this system can change during evolution to produce color pattern diversity.

PMID:
10607562
DOI:
10.1016/s0960-9822(00)80083-4
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center