Send to

Choose Destination
Oncogene. 1999 Dec 2;18(51):7253-64.

Serine phosphorylation of paxillin by heregulin-beta1: role of p38 mitogen activated protein kinase.

Author information

Cell Growth Regulation Laboratory, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX 77030, USA.


The mechanisms through which heregulin (HRG) regulates the progression of breast cancer cells to a more invasive phenotype are currently unknown. Recently we have shown that HRG treatment of breast cancer cells leads to the formation of lamellipodia/filopodia, and increased cell migration and invasiveness through the phosphatidylinositol 3-kinase (PI-3 kinase). Since the process of cell migration must involve changes in adhesion, we explored the potential HRG regulation of paxillin, a major cytoskeletal phosphoprotein of focal adhesion. We report that HRG stimulation of non-invasive breast cancer cells resulted in stimulation of p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinases (ERK) and PI-3K, and a concurrent unexpected increase in the level of paxillin phosphorylation on serine residue which was sensitive to protein-phosphatase 2b but not to protein tyrosine phosphatase 1. In addition, HRG triggered a rapid redistribution of paxillin to the perinuclear regions from the tyrosine-phosphorylated focal adhesions, and increased cell scattering. There was no effect of HRG on the state of phosphorylation and localization of focal adhesion kinase. The HRG-induced increase in serine phosphorylation of paxillin and cell scattering were selectively inhibited by a specific inhibitor of p38MAPK or a dominant-negative p38MAPK mutant, but not by inhibitors of p42/44MAPK or PI-3 kinase pathways. For the first time our results have shown that HRG, a potent migratory growth factor stimulates serine phosphorylation of paxillin. These findings suggest a role of p38MAPK-dependent signal transduction pathway(s) in serine phosphorylation and disassembly of the paxillin from the focal complexes during HRG-induced cell shape alterations and motility.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center