Send to

Choose Destination
Eur J Biochem. 2000 Jan;267(1):85-96.

Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase.

Author information

Institut de Biologie Moléculaire des Plantes, Strasbourg, France.


During the course of a search for cDNAs encoding plant sterol acyltransferases, an expressed sequence tag clone presenting substantial identity with yeast and animal acyl CoA:cholesterol acyltransferases was used to screen cDNA libraries from Arabidopsis and tobacco. This resulted in the isolation of two full-length cDNAs encoding proteins of 520 and 532 amino acids, respectively. Attempts to complement the yeast double-mutant are1 are2 defective in acyl CoA:cholesterol acyltransferase were unsuccessful, showing that neither gene encodes acyl CoA:cholesterol acyltransferase. Their deduced amino acid sequences were then shown to have 40 and 38% identity, respectively, with a murine acyl CoA:diacylglycerol acyltransferase and their expression in are1 are2 or wild-type yeast resulted in a strong increase in the incorporation of oleyl CoA into triacylglycerols. Incorporation was 2-3 times higher in microsomes from yeast transformed with these plant cDNAs than in yeast transformed with the void vector, clearly showing that these cDNAs encode acyl CoA:diacylglycerol acyltransferases. Moreover, during the preparation of microsomes from the Arabidopsis DGAT-transformed yeast, a floating layer was observed on top of the 100 000 g supernatant. This fraction was enriched in triacylglycerols and exhibited strong acyl CoA:diacylglycerol acyltransferase activity, whereas almost no activity was detected in the corresponding clear fraction from the control yeast. Thanks to the use of this active fraction and dihexanoylglycerol as a substrate, the de novo synthesis of 1,2-dihexanoyl 3-oleyl glycerol by AtDGAT could be demonstrated. Transformation of tobacco with AtDGAT was also performed. Analysis of 19 primary transformants allowed detection, in several individuals, of a marked increase (up to seven times) of triacylglycerol content which correlated with the AtDGAT mRNA expression. Furthermore, light-microscopy observations of leaf epidermis cells, stained with a lipid-specific dye, showed the presence of lipid droplets in the cells of triacylglycerol-overproducer plants, thus illustrating the potential application of acyl CoA:diacylglycerol acyltransferase-transformed plants.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center