Send to

Choose Destination
Int J Oncol. 2000 Jan;16(1):109-17.

Nitric oxide-mediated apoptosis in human breast cancer cells requires changes in mitochondrial functions and is independent of CD95 (APO-1/Fas).

Author information

Deutsches Krebsforschungszentrum, Abteilung Zellulare Immunologie G0100, FSP Tumorimmunologie, D-69120 Heidelberg, Germany.


We have previously shown that nitric oxide (NO) induces apoptosis in different human neoplastic lymphoid cells through caspase activation. Here we studied the NO-mediated apoptosis in human breast cancer cell lines derived from primary tumor (BT-20) or from metastasis (MCF-7). NO donor glycerol trinitrate (GTN) induced apoptosis in both cell lines which was completely abrogated after pretreatment with the broad spectrum caspase inhibitor zVAD-fmk. NO triggered also a time-dependent activation of caspase-1, caspase-3, and caspase-6 in these cells. Moreover, NO caused a release of mitochondrial protein cytochrome c into the cytosol, an increase in the number of cells with low mitochondrial transmembrane potential and with high level of reactive oxygen species production. However, NO did not induce mRNA expression of CD95 (APO-1/Fas) ligand. FAS-associated phosphatase-1 (FAP-1) molecule was constitutively expressed at the mRNA level and did not show any changes upon NO treatment in both breast cancer cell lines. The expression of the pro-apoptotic protein Bax and of the anti-apoptotic protein Bcl-2 remained unchanged in MCF-7 and BT-20 cells upon GTN treatment. We suggest that the mechanism of NO-mediated activation of the caspase cascade and subsequent apoptosis in human breast cancer cells required mitochondrial damage (in particular, cytochrome c release, disruption of mitochondrial transmembrane potential and generation of reactive oxygen species) but not the activation of the CD95/CD95L pathway.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Spandidos Publications
Loading ...
Support Center