Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Dec 24;274(52):37270-9.

Alternative mechanisms of vacuolar acidification in H(+)-ATPase-deficient yeast.

Author information

  • 1Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8.


Acidification of the endosomal/lysosomal pathway by the vacuolar-type proton translocating ATPase (V-ATPase) is necessary for a variety of essential eukaryotic cellular functions. Nevertheless, yeasts lacking V-ATPase activity (Deltavma) are viable when grown at low pH, suggesting alternative methods of organellar acidification. This was confirmed by directly measuring the vacuolar pH by ratio fluorescence imaging. When Deltavma yeasts were cultured and tested in the acidic conditions required for growth of V-ATPase-deficient mutants, the vacuolar pH was 5.9. Fluid-phase pinocytosis of acidic extracellular medium cannot account for these observations, because the V-ATPase-independent vacuolar acidification was unaffected in mutants deficient in endocytosis. Similarly, internalization of the plasmalemmal H(+)-ATPase (Pma1p) was ruled out, because overexpression of Pma1p failed to complement the Deltavma phenotype and did not potentiate the vacuolar acidification. To test whether weak electrolytes present in the culture medium could ferry acid equivalents to the vacuole, wild-type and the Deltavma yeasts were subjected to sudden changes in extracellular pH. In both cell types, the vacuoles rapidly alkalinized when external pH was raised from 5.5 (the approximate pH of the culture medium) to 7.5 and re-acidified when the yeasts were returned to a medium of pH 5.5. Importantly, these rapid pH changes were only observed when NH(4)(+), routinely added as a nitrogen source, was present. The NH(4)(+)-dependent acidification was not due to efflux of NH(3) from the vacuole, as cells equilibrated to pH 7.5 in the absence of weak electrolytes rapidly acidified when challenged with an acidic medium containing NH(4)(+). These findings suggest that although NH(3) can act as a cell-permeant proton scavenger, NH(4)(+) may function as a protonophore, facilitating equilibration of the pH across the plasma and vacuolar membranes of yeast. The high concentration of NH(4)(+) frequently added as a nitrogen source to yeast culture media together with effective NH(4)(+) transporters thereby facilitate vacuolar acidification when cells are suspended in acidic solutions.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk