Send to

Choose Destination
See comment in PubMed Commons below
Genes Dev. 1999 Dec 1;13(23):3115-24.

Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome.

Author information

Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA.


Beckwith-Wiedemann syndrome (BWS) is a clinically variable disorder characterized by somatic overgrowth, macroglossia, abdominal wall defects, visceromegaly, and an increased susceptibility to childhood tumors. The disease has been linked to a large cluster of imprinted genes at human chromosome 11p15.5. A subset of BWS patients has been identified with loss-of-function mutations in p57(KIP2), a maternally expressed gene encoding a G(1) cyclin-dependent kinase inhibitor. Some patients display loss of imprinting of IGF2, a fetal-specific growth factor that is paternally expressed. To understand how the same disease can result from misregulation of two linked, but unrelated, genes, we generated a mouse model for BWS that both harbors a null mutation in p57(Kip2) and displays loss of Igf2 imprinting. These mice display many of the characteristics of BWS, including placentomegaly and dysplasia, kidney dysplasia, macroglossia, cleft palate, omphalocele, and polydactyly. Some, but not all, of the phenotypes are shown to be Igf2 dependent. In two affected tissues, the two imprinted genes appear to act in an antagonistic manner, a finding that may help explain how BWS can arise from mutations in either gene.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center