Send to

Choose Destination
Am J Physiol. 1999 Dec;277(6):E1103-10. doi: 10.1152/ajpendo.1999.277.6.E1103.

Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content.

Author information

Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, 2100 Copenhagen, Denmark.


The influence of muscle glycogen content on basal and contraction-induced glucose transport and cell surface GLUT-4 content was studied in rat skeletal muscle. Wistar rats were preconditioned by a combination of swimming exercise and diet, resulting in 40% lower (LG) or threefold higher (HG) muscle glycogen content compared with nonexercised controls (NG). At rest and during contractions, 2-deoxy-D-glucose uptake in perfused fast-twitch muscle, but not slow-twitch muscle, was significantly lower in HG compared with LG. Cell surface GLUT-4 content in the fast-twitch plantaris was 994 +/- 180, 1,173 +/- 311, and 2,155 +/- 243 dpm/g in the basal condition and increased (P < 0.05) to 2,285 +/- 239, 3,230 +/- 464, and 4,847 +/- 654 dpm/g during contractions with HG, NG, and LG, respectively, the increase being significantly smaller in HG compared with LG. The contraction-induced increments in glucose transport and in cell surface GLUT-4 content were negatively correlated with the initial glycogen content (P <0.01). In conclusion, glucose transport and cell surface GLUT-4 content in resting and contracting fast-twitch muscle are dependent on the muscle glycogen content.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center