Send to

Choose Destination
J Lab Clin Med. 1999 Dec;134(6):649-58.

Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death.

Author information

First Department of Medicine, Hamamatsu University School of Medicine, Japan.


To clarify the pathophysiologic role of apoptosis in acute renal failure (ARF), we examined whether the attenuation of cisplatin-induced ARF is associated with the change in the degree of apoptotic cell death. The administration of cisplatin (CDDP) (6 mg/kg body weight) in rats induced ARF at day 5, as manifested by a significant increase in serum creatinine (Scr) and tubular damage. CDDP-induced apoptotic cell death was confirmed by electron microscopic examination, agarose gel electrophoresis, and increased cells positive for TaT-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) in the outer medulla of the kidney. Treatment with dimethylthiourea (DMTU)--a scavenger of hydroxyl radicals--or glycine abrogated CDDP-induced increases in Scr, the tubular damage score, and the number of TUNEL-positive cells. Pretreatment with uranyl acetate (UA) induced a significant expression of Bcl-2 in the kidney and ameliorated CDDP-induced increases in Scr, the tubular damage score, and TUNEL-positive cells in the outer stripe of the outer medulla. Our findings indicate (1) that the attenuation of CDDP-induced ARF was associated with less apoptotic cell death and (2) that the induction of the anti-apoptotic protein Bcl-2 attenuated apoptosis and tubular damage. Our results suggest that apoptotic cell death may play an important role in the development of cisplatin-induced ARF.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center