Format

Send to

Choose Destination
Med Sci Sports Exerc. 1999 Nov;31(11):1665-76.

Comparing cycling world hour records, 1967-1996: modeling with empirical data.

Author information

1
Exercise Science Unit, University of Tennessee, Knoxville, USA.

Abstract

PURPOSE:

The world hour record in cycling has increased dramatically in recent years. The present study was designed to compare the performances of former/current record holders, after adjusting for differences in aerodynamic equipment and altitude. Additionally, we sought to determine the ideal elevation for future hour record attempts.

METHODS:

The first step was constructing a mathematical model to predict power requirements of track cycling. The model was based on empirical data from wind-tunnel tests, the relationship of body size to frontal surface area, and field power measurements using a crank dynamometer (SRM). The model agreed reasonably well with actual measurements of power output on elite cyclists. Subsequently, the effects of altitude on maximal aerobic power were estimated from published research studies of elite athletes. This information was combined with the power requirement equation to predict what each cyclist's power output would have been at sea level. This allowed us to estimate the distance that each rider could have covered using state-of-the-art equipment at sea level. According to these calculations, when racing under equivalent conditions, Rominger would be first, Boardman second, Merckx third, and Indurain fourth. In addition, about 60% of the increase in hour record distances since Bracke's record (1967) have come from advances in technology and 40% from physiological improvements.

RESULTS AND CONCLUSIONS:

To break the current world hour record, field measurements and the model indicate that a cyclist would have to deliver over 440 W for 1 h at sea level, or correspondingly less at altitude. The optimal elevation for future hour record attempts is predicted to be about 2500 m for acclimatized riders and 2000 m for unacclimatized riders.

PMID:
10589872
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center