Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1999 Dec;181(23):7339-45.

Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases.

Author information

Microbial Biochemistry and Genetics Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, Bethesda, Maryland 20892, USA.


The gene celF of the cryptic cel operon of Escherichia coli has been cloned, and the encoded 6-phospho-beta-glucosidase (cellobiose-6-phosphate [6P] hydrolase; CelF [EC]) has been expressed and purified in a catalytically active state. Among phospho-beta-glycosidases, CelF exhibits unique requirements for a divalent metal ion and NAD(+) for activity and, by sequence alignment, is assigned to family 4 of the glycosylhydrolase superfamily. CelF hydrolyzed a variety of P-beta-glucosides, including cellobiose-6P, salicin-6P, arbutin-6P, gentiobiose-6P, methyl-beta-glucoside-6P, and the chromogenic analog, p-nitrophenyl-beta-D-glucopyranoside-6P. In the absence of a metal ion and NAD(+), purified CelF was rapidly and irreversibly inactivated. The functional roles of the cofactors have not been established, but NAD(+) appears not to be a reactant and there is no evidence for reduction of the nucleotide during substrate cleavage. In solution, native CelF exists as a homotetramer (M(w), approximately 200,000) composed of noncovalently linked subunits, and this oligomeric structure is maintained independently of the presence or absence of a metal ion. The molecular weight of the CelF monomer (M(r), approximately 50,000), estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is in agreement with that calculated from the amino acid sequence of the polypeptide (450 residues; M(r) = 50,512). Comparative sequence alignments provide tentative identification of the NAD(+)-binding domain (residues 7 to 40) and catalytically important glutamyl residues (Glu(112) and Glu(356)) of CelF.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center