Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 1999 Dec;126(24):5559-68.

The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana.

Author information

1
Laboratory of Plant Cell Biology, Institute of Molecular Agrobiology, National University of Singapore, Singapore, 117 604.

Abstract

Arabidopsis thaliana trichomes provide an attractive model system to dissect molecular processes involved in the generation of shape and form in single cell morphogenesis in plants. We have used transgenic Arabidopsis plants carrying a GFP-talin chimeric gene to analyze the role of the actin cytoskeleton in trichome cell morphogenesis. We found that during trichome cell development the actin microfilaments assumed an increasing degree of complexity from fine filaments to thick, longitudinally stretched cables. Disruption of the F-actin cytoskeleton by actin antagonists produced distorted but branched trichomes which phenocopied trichomes of mutants belonging to the 'distorted' class. Subsequent analysis of the actin cytoskeleton in trichomes of the distorted mutants, alien, crooked, distorted1, gnarled, klunker and wurm uncovered actin organization defects in each case. Treatments of wild-type seedlings with microtubule-interacting drugs elicited a radically different trichome phenotype characterized by isotropic growth and a severe inhibition of branch formation; these trichomes did not show defects in actin cytoskeleton organization. A normal actin cytoskeleton was also observed in trichomes of the zwichel mutant which have reduced branching. ZWICHEL, which was previously shown to encode a kinesin-like protein is thought to be involved in microtubule-linked processes. Based on our results we propose that microtubules establish the spatial patterning of trichome branches whilst actin microfilaments elaborate and maintain the overall trichome pattern during development.

PMID:
10572033
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center