Format

Send to

Choose Destination
Anal Chem. 1999 Nov 1;71(21):4981-8.

A molecular scanner to automate proteomic research and to display proteome images.

Author information

1
Swiss Institute of Bioinformatics, University Medical Center, Geneva, Switzerland. Pierre-Alain.Binz@dim.hcuge.ch

Abstract

Identification and characterization of all proteins expressed by a genome in biological samples represent major challenges in proteomics. Today's commonly used high-throughput approaches combine two-dimensional electrophoresis (2-DE) with peptide mass fingerprinting (PMF) analysis. Although automation is often possible, a number of limitations still adversely affect the rate of protein identification and annotation in 2-DE databases: the sequential excision process of pieces of gel containing protein; the enzymatic digestion step; the interpretation of mass spectra (reliability of identifications); and the manual updating of 2-DE databases. We present a highly automated method that generates a fully annoated 2-DE map. Using a parallel process, all proteins of a 2-DE are first simultaneously digested proteolytically and electro-transferred onto a poly(vinylidene difluoride) membrane. The membrane is then directly scanned by MALDI-TOF MS. After automated protein identification from the obtained peptide mass fingerprints using PeptIdent software (http://www.expasy.ch/tools/peptident.html + ++), a fully annotated 2-D map is created on-line. It is a multidimensional representation of a proteome that contains interpreted PMF data in addition to protein identification results. This "MS-imaging" method represents a major step toward the development of a clinical molecular scanner.

PMID:
10565287
DOI:
10.1021/ac990449e
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center