Format

Send to

Choose Destination
J Clin Invest. 1999 Nov;104(10):1441-7.

Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure.

Author information

1
Division of Experimental Therapy, The Netherlands Cancer Institute, 1066 CX Amsterdam.

Abstract

It was recently shown that naturally occurring Mdr1a mutant fetuses of the CF-1 outbred mouse stock have no placental Mdr1a P-glycoprotein (P-gp) and that this absence is associated with increased sensitivity to avermectin, a teratogenic pesticide. To further define the role of placental drug-transporting P-gp in toxicological protection of the fetus, we used mice with a targeted disruption of the Mdr1a and Mdr1b genes. Mdr1a(+/-)/1b(+/-) females were mated with Mdr1a(+/-)/1b(+/-) males to obtain fetuses of 3 genotypes (Mdr1a(+/+)/1b(+/+), Mdr1a(+/-)/1b(+/-), and Mdr 1a(-/-)/1b(-/-)) in a single mother. Intravenous administration of the P-gp substrate drugs [(3)H]digoxin, [(14)C]saquinavir, or paclitaxel to pregnant dams revealed that 2.4-, 7-, or 16-fold more drug, respectively, entered the Mdr1a(-/-)/1b(-/-) fetuses than entered wild-type fetuses. Furthermore, placental P-gp activity could be completely inhibited by oral administration of the P-gp blockers PSC833 or GG918 to heterozygous mothers. Our findings imply that the placental drug-transporting P-gp is of great importance in limiting the fetal penetration of various potentially harmful or therapeutic compounds and demonstrate that this P-gp function can be abolished by pharmacological means. The latter principle could be applied clinically to improve pharmacotherapy of the unborn child.

PMID:
10562306
PMCID:
PMC409845
DOI:
10.1172/JCI7963
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center