Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1999 Nov;82(5):2171-81.

Two components of transducer adaptation in auditory hair cells.

Author information

1
Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.

Abstract

Mechanoelectrical transducer currents in turtle auditory hair cells adapted to maintained stimuli via a Ca(2+)-dependent mechanism characterized by two time constants of approximately 1 and 15 ms. The time course of adaptation slowed as the stimulus intensity was raised because of an increased prominence of the second component. The fast component of adaptation had a similar time constant for both positive and negative displacements and was unaffected by the myosin ATPase inhibitors, vanadate and butanedione monoxime. Adaptation was modeled by a scheme in which Ca(2+) ions, entering through open transducer channels, bind at two intracellular sites to trigger independent processes leading to channel closure. It was assumed that the second site activates a modulator with 10-fold slower kinetics than the first site. The model was implemented by computing Ca(2+) diffusion within a single stereocilium, incorporating intracellular calcium buffers and extrusion via a plasma membrane CaATPase. The theoretical results reproduced several features of the experimental responses, including sensitivity to the concentration of external Ca(2+) and intracellular calcium buffer and a dependence on the onset speed of the stimulus. The model also generated damped oscillatory transducer responses at a frequency dependent on the rate constant for the fast adaptive process. The properties of fast adaptation make it unlikely to be mediated by a myosin motor, and we suggest that it may result from Ca(2+) binding to the transducer channel or a nearby cytoskeletal element.

PMID:
10561397
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center