Send to

Choose Destination
Nat Cell Biol. 1999 Aug;1(4):221-6.

The base of the proteasome regulatory particle exhibits chaperone-like activity.

Author information

Institut für Biochemie, Medizinische Fakultät, Humboldt Universität zu Berlin, Charité, Germany.


Protein substrates of the proteasome must apparently be unfolded and translocated through a narrow channel to gain access to the proteolytic active sites of the enzyme. Protein folding in vivo is mediated by molecular chaperones. Here, to test for chaperone activity of the proteasome, we assay the reactivation of denatured citrate synthase. Both human and yeast proteasomes stimulate the recovery of the native structure of citrate synthase. We map this chaperone-like activity to the base of the regulatory particle of the proteasome, that is, to the ATPase-containing assembly located at the substrate-entry ports of the channel. Denatured but not native citrate synthase is bound by the base complex. Ubiquitination of citrate synthase is not required for its binding or refolding by the base complex of the proteasome. These data suggest a model in which ubiquitin-protein conjugates are initially tethered to the proteasome by specific recognition of their ubiquitin chains; this step is followed by a nonspecific interaction between the base and the target protein, which promotes substrate unfolding and translocation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center