Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Nov 19;274(47):33627-36.

Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2.

Author information

1
Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA.

Abstract

Exposure of HepG2 cells to beta-naphthoflavone (beta-NF) or pyrrolidine dithiocarbamate (PDTC) resulted in the up-regulation of the gamma-glutamylcysteine synthetase catalytic (GCS(h)) and regulatory (GCS(l)) subunit genes. Increased expression was associated with an increase in the binding of Nrf2 to electrophile response elements (EpRE) in the promoters of these genes. Nrf2 overexpression increased the activity of GCS(h) and GCS(l) promoter/reporter transgenes. Overexpression of an MafK dominant negative mutant decreased Nrf2 binding to GCS EpRE sequences, inhibited the inducible expression of GCS(h) and GCS(l) promoter/reporter transgenes, and reduced endogenous GCS gene induction. beta-NF and PDTC exposure also increased steady-state levels of MafG mRNA. In addition to Nrf2, small Maf and JunD proteins were detected in GCS(h)EpRE-protein complexes and, to a lesser extent, in GCS(l)EpRE-protein complexes. The Nrf2-associated expression of GCS promoter/reporter transgenes was inhibited by overexpression of MafG. Inhibition of protein synthesis by cycloheximide partially decreased inducibility by PDTC or beta-NF and resulted in significant increases in GCS mRNA at late time points, when GCS mRNA levels are normally declining. We hypothesize that, in response to beta-NF and PDTC, the GCS subunit genes are transcriptionally up-regulated by Nrf2-basic leucine zipper complexes, containing either JunD or small Maf protein, depending on the particular GCS EpRE target sequence and the inducer. Following maximal induction, down-regulation of the two genes is mediated via a protein synthesis-dependent mechanism.

PMID:
10559251
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center