Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1999 Nov 9;38(45):14851-9.

Ligand-dependent tau filament formation: implications for Alzheimer's disease progression.

Author information

1
Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.

Abstract

The mechanism through which arachidonic acid induces the polymerization of tau protein into filaments under reducing conditions was characterized through a combination of fluorescence spectroscopy and electron microscopy. Results show that polymerization follows a ligand-mediated mechanism, where binding of arachidonic acid is an obligate step preceding tau-tau interaction. Homopolymerization begins with rapid (on the order of seconds) nucleation, followed by a slower elongation phase (on the order of hours). Although essentially all synthetic filaments have straight morphology at early time points, they interact with thioflavin-S and monoclonal antibody Alz50 much like authentic paired helical filaments, suggesting that the conformation of tau protein is similar in the two filament forms. Over a period of days, synthetic straight filaments gradually adopt paired helical morphology. These results define a novel pathway of tau filament formation under reducing conditions, where oxidation may contribute to final paired helical morphology, but is not a necessary prerequisite for efficient nucleation or elongation of tau filaments.

PMID:
10555967
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center