Send to

Choose Destination
See comment in PubMed Commons below
J Muscle Res Cell Motil. 1999 Aug;20(5-6):547-54.

The effect of Ca2+ on the structure of synthetic filaments of smooth muscle myosin.

Author information

Institute of Experimental and Theoretical Biophysics, Russian Academy of Sciences, Pushchino.


Using electron microscopy and negative staining we have studied the effect of Ca2+ on the structure of synthetic filaments of chicken gizzard smooth muscle myosin under conditions applied by Frado and Craig (1989) for demonstration of the influence of Ca2+ on the structure of synthetic filaments of scallop striated muscle myosin. The results show that Ca2+ induces the transition of compact, ordered structure of filaments with a 14.5 nm axial repeat of the myosin heads close to the filament backbone (characteristic of the relaxing conditions) to a disordered structure with randomly arranged myosin heads together with subfragments-2 (S-2) seen at a distance of up to 50 nm from the filament backbone. This order/disorder transition is much more pronounced in filaments formed of unphosphorylated myosin, since a substantial fraction of phosphorylated filaments in the relaxing solution is already disordered due to phosphorylation. Under rigor conditions some of the filaments of unphosphorylated and phosphorylated myosin retain a certain degree of order resembling those under relaxing conditions, while most of them have a substantially disordered appearance. The results indicate that Ca2+-induced movement of myosin heads away from the filament backbone is an inherent property of smooth muscle myosin, like molluscan muscle myosin regulated exclusively by Ca2+ binding, and can play a modulatory role in smooth muscle contraction.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center