Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1999 Nov 5;293(4):769-80.

The hRad51 and RecA proteins show significant differences in cooperative binding to single-stranded DNA.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655-0103, USA.


The human Rad51 protein (hRad51), like its bacterial homologue RecA, catalyzes genetic recombination between homologous single and double-stranded DNA substrates. Using IAsys biosensor technology, we have examined the critical first step in this process, the binding of hRad51 and RecA to ssDNA. We show that hRad51 binds cooperatively and with high affinity to an oligonucleotide substrate in both the absence and presence of nucleotide cofactors. In fact, both ATP and ATPgammaS have a slight inhibitory effect on hRad51 binding affinity. We show that this results from a decrease in the intrinsic affinity of a given monomer for ssDNA, which is counterbalanced by an increase in the cooperative assembly of protein onto DNA. In contrast, we show that the dramatic NTP-induced increase in ssDNA binding affinity of RecA is accounted for by a significant increase in cooperative filament assembly and not by an increase in the intrinsic DNA binding affinity of monomeric RecA. These results demonstrate that although the hRad51 and RecA proteins display many structural and functional similarities, they show profound inherent mechanistic differences.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center