Photopheresis: clinical applications and mechanism of action

J Investig Dermatol Symp Proc. 1999 Sep;4(1):85-90. doi: 10.1038/sj.jidsp.5640188.

Abstract

Photopheresis is a leukapheresis-based therapy that utilizes 8-methoxypsoralen and ultraviolet A irradiation. Photopheresis is currently available at approximately 150 medical centers worldwide. Recent evidence suggests that this therapy used as a single agent may significantly prolong life, as well as induce a 50%-75% response rate among individuals with advanced cutaneous T cell lymphoma (CTCL). Furthermore, a 20%-25% complete response rate with photopheresis alone, or in combination with other biologic response modifiers, has been obtained at our institution among patients with Sezary syndrome. These complete responses have been characterized by the complete disappearance of morphologically atypical cells from the skin and blood. The use of sensitive molecular techniques has also confirmed the sustained disappearance of the malignant T cell clone from the blood of patients with complete responses. In addition to the treatment of CTCL, numerous reports indicate that photopheresis is a potent agent in the therapy of acute allograft rejection among cardiac, lung, and renal transplant recipients. Chronic graft versus host disease also appears to be quite responsive to photopheresis therapy. Likewise, there may also be a potential role for photopheresis in the therapy of certain autoimmune diseases that are poorly responsive to conventional therapy. The immunologic basis for the responses of patients with these conditions is likely due to the induction of anticlonotypic immunity directed against pathogenic clones of T lymphocytes. Treatment-induced apoptotic death of pathogenic T cells and activation of antigen presenting cells are postulated to have important effects in this therapeutic process.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases / therapy
  • Graft Rejection / prevention & control
  • Humans
  • Lymphoma, T-Cell, Cutaneous / therapy
  • Photopheresis*
  • Skin Neoplasms / therapy