Format

Send to

Choose Destination
See comment in PubMed Commons below
Atherosclerosis. 1999 Nov 1;147(1):95-104.

Oxidized-LDL induce apoptosis in HUVEC but not in the endothelial cell line EA.hy 926.

Author information

1
Department of Biochemistry, Hospital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, France. biochemie.abc@abc.ap-hop-paris.fr

Abstract

We studied the cytotoxic effect of copper-oxidized LDL in human primary human umbilical vein endothelial cells (HUVEC) and the immortalized EA.hy 926 cell line. Copper oxidized LDL (50-200 microg apoB/ml) induced concentration-dependent apoptotic cell death in HUVEC but did not induce apoptosis in EA.hy 926 cells. Only necrotic EA.hy 926 cells were evidenced at all copper oxidized LDL concentrations (25-200 microg apoB/ml), oxidation states (lightly, moderately and extensively copper-oxidized LDL) and incubation periods (4, 8 and 20 h). The different mechanisms of cell death induced by copper-oxidized LDL in EA.hy 926 cells and HUVEC may be related to various factors such as cytokines. In this study, we investigated whether interleukin-8 may be implicated in this process. The interleukin-8 production was increased in EA.hy 926 cells but not in HUVEC incubated with oxidized LDL. This increase in EA.hy 926 cells was associated with necrosis but not apoptosis. Nevertheless, the addition of interleukin-8 to HUVEC did not inhibit apoptosis induced by oxidized LDL. As the lower antioxidant capacity of EA.hy 926 cells results in higher sensitivity to oxidized LDL cytotoxicity (as we previously described), the redox status of cells may also control the form of endothelial cell death. In atherosclerotic lesions, the formation of apoptotic endothelial cells may result in part from the induction by oxidized LDL.

PMID:
10525130
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center