Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 1999 Oct 15;85(8):716-22.

Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect.

Author information

1
Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina.

Abstract

Myocardial stretch produces an increase in developed force (DF) that occurs in two phases: the first (rapidly occurring) is generally attributed to an increase in myofilament calcium responsiveness and the second (gradually developing) to an increase in [Ca(2+)](i). Rat ventricular trabeculae were stretched from approximately 88% to approximately 98% of L(max), and the second force phase was analyzed. Intracellular pH, [Na(+)](i), and Ca(2+) transients were measured by epifluorescence with BCECF-AM, SBFI-AM, and fura-2, respectively. After stretch, DF increased by 1.94+/-0.2 g/mm(2) (P<0.01, n = 4), with the second phase accounting for 28+/-2% of the total increase (P<0.001, n = 4). During this phase, SBFI(340/380) ratio increased from 0.73+/-0.01 to 0.76+/-0.01 (P<0.05, n = 5) with an estimated [Na(+)](i) rise of approximately 6 mmol/L. [Ca(2+)](i) transient, expressed as fura-2(340/380) ratio, increased by 9.2+/-3.6% (P<0.05, n = 5). The increase in [Na(+)](i) was blocked by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). The second phase in force and the increases in [Na(+)](i) and [Ca(2+)](i) transient were blunted by AT(1) or ET(A) blockade. Our data indicate that the second force phase and the increase in [Ca(2+)](i) transient after stretch result from activation of the Na(+)/H(+) exchanger (NHE) increasing [Na(+)](i) and leading to a secondary increase in [Ca(2+)](i) transient. This reflects an autocrine-paracrine mechanism whereby stretch triggers the release of angiotensin II, which in turn releases endothelin and activates the NHE through ET(A) receptors.

PMID:
10521245
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center