Send to

Choose Destination
Eur J Biochem. 1999 Nov;265(3):1075-84.

Ca2+-induced p38/SAPK signalling inhibited by the immunosuppressant cyclosporin A in human peripheral blood mononuclear cells.

Author information

Medizinische Hochschule Hannover, Institut für Molekularbiologie, Hannover, Germany.


To understand the effects of the immunosuppressant cyclosporin A (CsA) on Ca2+-mediated intracellular signalling pathways in human peripheral blood mononuclear cells (PBMCs), we investigated its effects on the activity profiles of mitogen-activated protein kinase (MAPK) cascades. PBMCs, or subpopulations thereof, were simultaneously stimulated with a phorbol ester and the calcium ionophore ionomycin, in the presence or absence of therapeutic concentrations of CsA. In these primary human cells, CsA significantly inhibited PMA/ionomycin-mediated and ionomycin-mediated activation of the MAPK kinase MKK6, as well as its downstream kinases SAPK2a (p38alpha) and MAPKAP-K2. PMA/ionomycin treatment also mediated activation of SAPK1 (JNKs) which was inhibited by CsA. Treatment with ionomycin alone also resulted in CsA-sensitive activation of SAPK1. With regard to transcription factors targeted by the Ca2+-induced MAPK signalling network, we found CsA to inhibit the ionomycin-mediated phosphorylation of ATF2 at Thr71. We identified the heterodimeric transcription factor ATF2/CREB as constitutively binding to the essential cAMP response element (CRE) site within the Ca2+-regulated DNA polymerase beta promoter and contributing to the activation of this promoter. Our data implicate ATF2 phosphorylation status as a nuclear sensor within PBMCs that monitors converging intracellular Ca2+-signalling pathways.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center