Send to

Choose Destination
Biochemistry. 1999 Sep 7;38(36):11796-803.

Vascular endothelial growth factor VEGF-like heparin-binding protein from the venom of Vipera aspis aspis (Aspic viper).

Author information

Department of Microbiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya, 468-8503, Japan.


The heparin-binding dimeric hypotensive factor (HF) was purified from Vipera aspis aspis (Aspic viper) venom [Komori, Y. and Sugihara, H. (1990) Toxicon 28, 359-369]. In this study, the amino acid sequence, and structure and function of HF, were elucidated. By electrospray ionization mass spectrometry (ESI-MS), the molecular weight of HF was determined to be 25 072.1. The complete amino acid sequence of HF was determined by Edman sequencing of the S-pyridylethylated HF and its peptides derived from enzymatic digestion. The theoretical molecular mass calculated from the primary structure agrees well with the molecular weight determined by ESI-MS. HF consists of two homogeneous monomers bound covalently. The monomer with an N-terminal blocked by pyroglutamic acid contains 110 amino acid residues, including eight cysteine residues, two of which are considered to be involved in intermolecular disulfide bonds. Sequential homology search revealed that the primary structure of HF is similar to that of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) with a sequential homology of 45 and 22%, respectively. When injected intradermally into a rat, an increase in capillary permeability was observed with HF or VEGF. On the other hand, only HF exerted a strong hypotensive effect after intravenous injection of samples into a rat. Purified HF has a mitogenic effect on endothelial cells. Through the use of bovine aortic endothelial cells (BAEC), the half-maximal mitogenic concentration of HF was determined to be 5-5. 5 nM (125-138 ng/mL). Similarly, VEGF had a mitogenic concentration at 0.5-1 nM. When incubated with HF and cycloheximide or HF and heparin, the cell growth was inhibited, suggesting that the mechanism of action of HF is similar to that of VEGF.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center