Send to

Choose Destination
Curr Biol. 1999 Sep 23;9(18):1035-8.

Ca(2+)-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions.

Author information

Department of Cell Biology Faculty of Medicine Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.


In multicellular organisms, various compositionally distinct fluid compartments are established by epithelial and endothelial cellular sheets. For these cells to function as barriers, tight junctions (TJs) are considered to create a primary barrier for the diffusion of solutes through the paracellular pathway [1] [2] [3]. In ultrathin sections viewed under electron microscopy, TJs appear as a series of apparent fusions, involving the outer leaflets of plasma membranes of adjacent cells, to form the so-called kissing points of TJs, where the intercellular space is completely obliterated [4]. Claudins are a family of 16 proteins whose members have been identified as major integral membrane proteins localized exclusively at TJs [5] [6] [7] [8]. It remains unclear, however, whether claudins have the cell-adhesion activity that would explain the unusual intercellular adhesion at TJs. Using mouse L-fibroblast transfectants expressing various amounts of claudin-1, -2 or -3, we found that these claudins possess Ca(2+)-independent cell-adhesion activity. Using ultrathin-section electron microscopy, we observed many kissing points of TJs between adjacent transfectants. Furthermore, the cell-adhesion activity of occludin, another integral membrane protein localized at TJs [9] [10] [11], was negligible when compared with that of claudins. Thus, claudins are responsible for TJ-specific obliteration of the intercellular space.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center