Send to

Choose Destination
See comment in PubMed Commons below
J Biochem. 1999 Oct;126(4):650-4.

Direct participation of potassium ion in the catalysis of coenzyme B(12)-dependent diol dehydratase.

Author information

  • 1Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan.


The direct ion-dipolar interactions between potassium ion (K(+)) and the two hydroxyl groups of the substrate are the most striking feature of the crystal structure of coenzyme B(12)-dependent diol dehydratase. We carried out density-functional-theory computations to determine whether K(+) can assist the 1,2-shift of the hydroxyl group in the substrate-derived radical. Between a stepwise abstraction/recombination reaction proceeding via a direct hydroxide abstraction by K(+) and a concerted hydroxyl group migration assisted by K(+), only a transition state for the latter concerted mechanism was found from our computations. The barrier height for the transition state from the complexed radical decreases by only 2.3 kcal/mol upon coordination of the migrating hydroxyl group to K(+), which corresponds to a 42-fold rate acceleration at 37 degrees C. The net binding energy upon replacement of the K(+)-bound water for substrate was calculated to be 10.7 kcal/mol. It can be considered that such a large binding energy is at least partly used for the substrate-induced conformational changes in the enzyme that trigger the homolytic cleavage of the Co-C bond of the coenzyme and the subsequent catalysis by a radical mechanism. We propose here a new mechanism for diol dehydratase in which K(+) plays a direct role in the catalysis.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center