Send to

Choose Destination
Vaccine. 1999 Aug 20;18(1-2):68-75.

Immunization with plasmid DNA encoding the envelope glycoprotein of Japanese Encephalitis virus confers significant protection against intracerebral viral challenge without inducing detectable antiviral antibodies.

Author information

Department of Biochemistry, Indian Institute of Science, Bangalore.


A plasmid DNA construct, pCMXENV encoding the envelope (E) glycoprotein of Japanese Encephalitis virus (JEV), was constructed. This plasmid expresses the E protein intracellularly, when transfected into Vero cells in culture. The ability of pCMXENV to protect mice from lethal JEV infection was evaluated using an intracerebral (i.c.) JEV challenge model. Several independent immunization and JEV challenge experiments were carried out and the results indicate that 51 and 59% of the mice are protected from lethal i.c. JEV challenge, when immunized with pCMXENV via intramuscular (i.m.) and intranasal (i.n.) routes respectively. None of the mice immunized with the vector DNA (pCMX) survived in any of these experiments. JEV-specific antibodies were not detected in pCMXENV-immunized mice either before or after challenge. JEV-specific T cells were observed in mice immunized with pCMXENV which increased significantly after JEV challenge indicating the presence of vaccination-induced memory T cells. Enhanced production of interferon-gamma (IFN-gamma) and complete absence of interleukin-4 (IL-4) in splenocytes of pCMXENV-immunized mice on restimulation with JEV antigens in vitro indicated that the protection is likely to be mediated by T helper (Th) lymphocytes of the Th1 sub-type. In conclusion, our results demonstrate that immunization with a plasmid DNA expressing an intracellular form of JEV E protein confers significant protection against i.c. JEV challenge even in the absence of detectable antiviral antibodies.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center