Send to

Choose Destination
See comment in PubMed Commons below
Gastroenterology. 1999 Oct;117(4):770-5.

Molecular characterization and functional regulation of a novel rat liver-specific organic anion transporter rlst-1.

Author information

  • 1Department of Neurophysiology, Tohoku University School of Medicine, Sendai, Ltd., Tokyo, Japan.



Recently, we isolated a new complementary DNA (cDNA) encoding human liver-specific organic anion transporter (LST-1), representing the multispecificity of human liver. The aim of this study was to isolate a rat counterpart of human LST-1 and examine the expression regulation of its messenger RNA (mRNA) to clarify the molecular basis of cholestasis.


A rat liver cDNA library was screened with human LST-1 cDNA as a probe. Xenopus oocyte expression system was used for functional analysis. Northern blot analyses were performed using the isolated cDNA (termed rlst-1). The bile duct ligation model and the cecum ligation and puncture model were used for expression analyses.


rlst-1 encodes 652 amino acids, predicting at least 11 transmembrane regions. The overall homology with human LST-1 was 60.2%, which is the highest among all known organic anion transporters. rlst-1 also belongs to the same new gene family as human LST-1, located between the organic anion transporter family and the prostaglandin transporter. rlst-1 preferably transports taurocholate (K(m), 9.45 micromol/L) in an Na(+)-independent manner. The rlst-1 mRNA is exclusively expressed in the liver. In both the bile duct ligation model and the cecum ligation and puncture model, mRNA expression levels of rlst-1 were down-regulated.


rlst-1 is a counterpart of human LST-1 and is one of the important transporters in rat liver for the clearance of bile acid. The expression of rlst-1 may be under feedback regulation of cholestasis by biliary obstruction and/or sepsis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk