Send to

Choose Destination
See comment in PubMed Commons below
J Gen Physiol. 1999 Oct;114(4):525-33.

Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive cl(-) channels.

Author information

  • 1Department of Cellular and Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.


To examine a possible relation between the swelling-induced ATP release pathway and the volume-sensitive Cl(-) channel, we measured the extracellular concentration of ATP released upon osmotic swelling and whole-cell volume-sensitive Cl(-) currents in a human epithelial cell line, Intestine 407, which lacks expression of cystic fibrosis transmembrane conductance regulator (CFTR). Significant release of ATP was observed within several minutes after a hypotonic challenge (56-80% osmolality) by the luciferin/luciferase assay. A carboxylate analogue Cl(-) channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, suppressed ATP release in a concentration-dependent manner with a half-maximal inhibition concentration of 6.3 microM. However, swelling-induced ATP release was not affected by a stilbene-derivative Cl(-) channel blocker, 4-acetamido-4'-isothiocyanostilbene at 100 microM. Glibenclamide (500 microM) and arachidonic acid (100 microM), which are known to block volume-sensitive outwardly rectifying (VSOR) Cl(-) channels, were also ineffective in inhibiting the swelling-induced ATP release. Gd(3+), a putative blocker of stretch-activated channels, inhibited swelling-induced ATP release in a concentration-dependent manner, whereas the trivalent lanthanide failed to inhibit VSOR Cl(-) currents. Upon osmotic swelling, the local ATP concentration in the immediate vicinity of the cell surface was found to reach approximately 13 microM by a biosensor technique using P2X(2) receptors expressed in PC12 cells. We have raised antibodies that inhibit swelling-induced ATP release from Intestine 407 cells. Earlier treatment with the antibodies almost completely suppressed swelling-induced ATP release, whereas the activity of VSOR Cl(-) channel was not affected by pretreatment with the antibodies. Taking the above results together, the following conclusions were reached: first, in a CFTR-lacking human epithelial cell line, osmotic swelling induces ATP release and increases the cell surface ATP concentration over 10 microM, which is high enough to stimulate purinergic receptors; second, the pathway of ATP release is distinct from the pore of the volume-sensitive outwardly rectifying Cl(-) channel; and third, the ATP release is not a prerequisite to activation of the Cl(-) channel.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk