Format

Send to

Choose Destination
Eur J Biochem. 1999 Oct 1;265(1):441-8.

A Dictyostelium protein binds to distinct oligo(dA) x oligo(dT) DNA sequences in the C-module of the retrotransposable element DRE.

Author information

1
Institut für Pharmazeutische Biologie, Universität Frankfurt/Mainz (Biozentrum), Frankfurt, Germany.

Abstract

The genome of the eukaryotic microbe Dictyostelium discoideum contains some 200 copies of the nonlong-terminal repeat retrotransposon DRE. Among several unique features of this retroelement, DRE is transcribed in both directions leading to the formation of partially overlapping plus strand and minus strand RNAs. The synthesis of minus strand RNAs is controlled by the C-module, a 134-bp DNA sequence located at the 3'-end of DRE. A nuclear protein (CMBF) binds to the C-module via interaction with two almost homopolymeric 24 bp oligo(dA) x oligo(dT) sequences. The DNA-binding drugs distamycin and netropsin, which bind to A x T-rich DNA sequences in the minor groove, competed efficiently for the binding of CMBF to the C-module. The CMBF-encoding gene, cbfA, was isolated and a DNA-binding domain was mapped to a 25-kDa C-terminal region of the protein. A peptide motif involved in the binding of A x T-rich DNA by high mobility group-I proteins ('GRP' box) was identified in the deduced CMBF protein sequence, and exchange of a consensus arginine residue for alanine within the CMBF GRP box abolished the interaction of CMBF with the C-module. The current data support the theory that CMBF binds to the C-module by detecting its long-range DNA conformation and interacting with A x T base pairs in the minor groove of oligo(dA) x oligo(dT) stretches.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center