Format

Send to

Choose Destination
Eur J Biochem. 1999 Oct 1;265(1):404-14.

2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum.

Author information

1
Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany.

Abstract

Component D (HgdAB) of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum was purified to homogeneity. It is able to use component A from Acidaminococcus fermentans (HgdC) to initiate catalysis together with ATP, Mg2+ and a strong reducing agent such as Ti(III)citrate. Component D from C. symbiosum has a 6 x higher specific activity compared with that from A. fermentans and contains a second [4Fe-4S] cluster but the same amount of riboflavin 5'-phosphate (1.0 per heterodimeric enzyme, m = 100 kDa). Mössbauer spectroscopy revealed symmetric cube-type structures of the two [4Fe-4S]2+ clusters. EPR spectroscopy showed the resistance of the clusters to reducing agents, but detected a sharp signal at g = 2. 004 probably due to a stabilized flavin semiquinone. Three genes from C. symbiosum coding for components D (hgdA and hgdB) and A (hgdC) were cloned and sequenced. Primer extension experiments indicated that the genes are transcribed in the order hgdCAB from an operon only half the size of that from A. fermentans. Sequence comparisons detected a close relationship to the dehydratase system from A. fermentans and HgdA from Fusobacterium nucleatum, as well as to putative proteins of unknown function from Archaeoglobus fulgidus. Lower, but significant, identities were found with putative enzymes from several methanogenic Archaea and Escherichia coli, as well as with the mechanistically related benzoyl-CoA reductases from the Proteobacteria Rhodopseudomonas palustris and Thauera aromatica.

PMID:
10491198
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center