Format

Send to

Choose Destination
See comment in PubMed Commons below
Gene Ther. 1999 Sep;6(9):1611-6.

Bone marrow stromal cells as a vehicle for gene transfer.

Author information

  • 1Central Arkansas Veterans Healthcare System, Myeloma and Transplantation Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

Abstract

Adoptive transfer of genetically modified somatic cells is playing an increasingly important role in the management of a wide spectrum of human diseases. Hematopoietic stem cells and lymphocytes have been used to transfer a variety of genes, however, they have limitations. In this study, the feasibility of retroviral gene transduction of bone marrow stromal cells, and the engraftment characteristics of these cells following infusion, was investigated in a murine transplantation model. Stromal cells derived from Balb/c mouse bone marrow were transduced with a replication-defective retrovirus containing the LacZ gene. Following three rounds of transduction, between 5 and 40% of the cells were positive for the LacZ gene. A total of 2 x 106 cells were infused into the same mouse strain. After the infusion, the LacZ gene was detected by PCR in the bone marrow, spleen, liver, kidney and lung; however, only the spleen and bone marrow samples were strongly positive. Quantitative PCR demonstrated that between 3 and 5% of spleen and bone marrow cells, and 1% of liver cells contained the LacZ gene at 3 weeks after infusion; <0.2% transduced cells were found in other organs. No difference was noted in engraftment between mice with or without irradiation before transplantation, suggesting that engraftment occurred without myeloablation. The infused transduced cells persisted for up to 24 weeks. Self-renewal of transplanted stromal cells was demonstrated in secondary transplant studies. Ease of culture and gene transduction and tissue specificity to hematopoietic organs (bone marrow, spleen, liver) is demonstrated, indicating that stromal cells may be an ideal vehicle for gene transfer.

PMID:
10490771
DOI:
10.1038/sj.gt.3300973
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center