Format

Send to

Choose Destination
Atherosclerosis. 1999 Aug;145(2):239-51.

Mouse very low-density lipoprotein receptor (VLDLR): gene structure, tissue-specific expression and dietary and developmental regulation.

Author information

1
Department of Cell Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA.

Abstract

The very low density lipoprotein receptor (VLDLR) is a multifunctional apolipoprotein (apo) E receptor that shares a common structural feature as well as some ligand specificity to apo E with members of the low density lipoprotein receptor gene family. We have isolated and characterized the mouse VLDLR gene. The mouse VLDLR gene contains 19 exons spanning approximately 50 kb. The exon-intron organization of the gene is completely conserved between mouse and human. Since the 5'-flanking region of the mouse VLDLR gene contains two copies of a sterol regulatory element-1 like sequence (SRE-1), we next studied regulation of the VLDLR mRNA expression in heart, skeletal muscle and adipose tissue in C57BL/6, LDLR-/-, apo E-/- and LDLR-/-apo E-/- mice fed normal chow or atherogenic diet. The VLDLR mRNA expression was down-regulated 3-fold by feeding atherogenic diet in heart and skeletal muscle only in LDLR-/- mice. In contrast, VLDLR mRNA expression was up-regulated by atherogenic diet in adipose tissue in all animal models except double knockout mice. These results suggest that SRE-1 may be functional and VLDLR plays a role in cholesterol homeostasis in heart and skeletal muscle when LDLR is absent and that apo E is required for this modulation. Developmental regulation of the VLDLR mRNA expression was also tissue-specific. VLDLR mRNA expression in heart displayed significant up and down regulation during development. Maximal level was detected on post-natal day 3. However, the VLDLR mRNA levels in skeletal muscle remained relatively constant except a slight dip on post-natal day 7. In kidney and brain, VLDLR mRNA also peaked on post-natal day 3 but remained relatively constant thereafter. In liver, VLDLR mRNA expression was very low; it was barely detectable at day 19 of gestation and was decreased further thereafter. In adipose tissue, the VLDLR mRNA level showed an increase on post-natal day 13, went down again during weaning and then continued to increase afterwards. This developmental pattern as well as dietary regulation in adipose tissue supports the notion that VLDLR plays a role in lipid accumulation in this tissue. Although the primary role of VLDLR in heart, muscle and adipose tissue is likely in lipid metabolism, developmental pattern of this receptor in other tissues suggests that VLDLR has functions that are unrelated to lipid metabolism.

PMID:
10488949
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center