Send to

Choose Destination
Mutat Res. 1999 Jul 30;434(3):243-51.

Apoptosis: checkpoint at the mitochondrial frontier.

Author information

Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.,


Apoptosis, an evolutionarily conserved form of cell death, requires a regulated program. Central to the apoptotic program is a family of cysteine proteases, known as caspases, that cleave a subset of cellular proteins, resulting in the stereotypic morphological changes of apoptotic cell death. In living cells caspases are present as inactive zymogens and become activated in response to pro-apoptotic stimuli. Mitochondria participate in the activation of caspases by releasing cytochrome c into the cytosol where it binds to the adaptor molecule Apaf-1 (apoptotic protease activating factor 1) and causes its oligomerization. This renders Apaf-1 competent to recruit and activate the cell death initiator caspase, pro-caspase-9. Once caspase-9 is activated, it cleaves and activates downstream cell death effector caspases. Bcl-2, an apoptosis inhibitor localized to mitochondrial outer membranes, prevents cytochrome c release, caspase activation and cell death. This review discusses recent advances on the role of mitochondria and cytochrome c in the central pathway leading to apoptotic cell death.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center