Format

Send to

Choose Destination
Am J Physiol. 1999 Sep;277(3):G678-86. doi: 10.1152/ajpgi.1999.277.3.G678.

Caerulein-induced NF-kappaB/Rel activation requires both Ca2+ and protein kinase C as messengers.

Author information

1
Department of Medicine I, University of Ulm, 89070 Ulm, Germany.

Abstract

The eukaryotic transcription factor NF-kappaB/Rel is activated by a large variety of stimuli. We have recently shown that NF-kappaB/Rel is induced during the course of caerulein pancreatitis. Here, we show that activation of NF-kappaB/Rel by caerulein, a CCK analog, requires increasing intracellular Ca2+ levels and protein kinase C activation. Caerulein induces a dose-dependent increase of nuclear NF-kappaB/Rel binding activity in pancreatic lobules, which is paralleled by degradation of IkappaBalpha. IkappaBbeta was only slightly affected by caerulein treatment. Consistent with an involvement of Ca2+, the endoplasmic reticulum-resident Ca2+-ATPase inhibitor thapsigargin activated NF-kappaB/Rel in pancreatic lobules. The intracellular Ca2+ chelator TMB-8 prevented IkappaBalpha degradation and subsequent nuclear translocation of NF-kappaB/Rel induced by caerulein. BAPTA-AM was less effective. Cyclosporin A, a Ca2+/calmodulin-dependent protein phosphatase (PP2B) inhibitor, decreased caerulein-induced NF-kappaB/Rel activation and IkappaBalpha degradation. The inhibitory effect of bisindolylmaleimide suggests that protein kinase C activity is also required for caerulein-induced NF-kappaB/Rel activation. These data suggest that Ca2+- as well as protein kinase C-dependent mechanisms are required for caerulein-induced NF-kappaB/Rel activation.

PMID:
10484394
DOI:
10.1152/ajpgi.1999.277.3.G678
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center