Send to

Choose Destination
Eur J Appl Physiol Occup Physiol. 1999 Sep;80(4):318-23.

Water and electrolyte shifts with partial fluid replacement during exercise.

Author information

Medical Research Council and University of Cape Town Bioenergetics of Exercise Research Unit, Sports Science Institute of South Africa, Newlands.


In this study, we examined whether athletes, who typically replace only approximately 50% of their fluid losses during moderate-duration endurance exercise, should attempt to replace their Na+ losses to maintain extracellular fluid volume. Six male cyclists performed three 90-min rides at 65% of peak O2 uptake in a 32 degrees C environment and ingested either no fluid (NF), 1.21 of water (W), or saline (S) containing 100 mmol of NaCl x l(-1) to replace their electrolyte losses. Both W and S conditions decreased final heart rates by approximately 10 betas min(-1) (P<0.005) and reduced falls in plasma volume (PV) by approximately 4% (P<0.05). Maintenance of PV after 10 min in the W trial prevented further rises in plasma concentrations of Na+ [Na+], Cl- and protein but in the S and NF trials, plasma [Na+] continued to increase by approximately 4 mEq x l(-1). Differences in plasma [Na+] had little effect on the approximately 2.4 l fluid, approximately 120 mEq Na+ and approximately 50 mEq K+ losses in sweat and urine in the three trials. The main effects of W and S were on body fluid shifts. During the NF trial, PV and interstitial fluid (ISF) and intracellular fluid (ICF) volumes decreased by approximately 0.1, 1.2 and 1.0 l, respectively. In the W trial, the approximately 1.2 l fluid and approximately 120 mEq Na+ losses contracted the ISF volume, and in the S trial, ISF volume was maintained by the movement of water from the ICF. Since the W and S trials were equally effective in maintaining PV, Na+ ingestion may not be of much advantage to athletes who typically replace only approximately 50% of their fluid losses during competitive endurance exercise.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center