Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1999 Sep;121(1):253-62.

Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells.

Author information

  • 1Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Unité Propre de Recherche 40, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France.


On the basis of the anion content of in vitro-cultured Arabidopsis plantlets, we explored the selectivity of the voltage-dependent anion channel of the plasma membrane of hypocotyl cells. In the whole-cell configuration, substitution of cytosolic Cl(-) by different anions led to the following sequence of relative permeabilities: NO(3)(-) (2.6) >/= SO(4)(2-) (2.0) > Cl(-) (1.0) > HCO(3)(-) (0.8) >> malate(2-) (0.03). Large whole-cell currents were measured for NO(3)(-) and SO(4)(2-), about five to six times higher than the equivalent Cl(-) currents. Since SO(4)(2-) is usually considered to be a weakly permeant or non-permeant ion, the components of the large whole-cell current were explored in more detail. Aside from its permeation through the channel with a unitary conductance, about two-thirds that of Cl(-), SO(4)(2-) had a regulatory effect on channel activity by preventing the run-down of the anion current both in the whole-cell and the outside-out configuration, increasing markedly the whole-cell current. The fact that the voltage-dependent plasma membrane anion channel of hypocotyl cells can mediate large NO(3)(-) and SO(4)(2-) currents and is regulated by nucleotides favors the idea that this anion channel can contribute to the cellular homeostasis of important metabolized anions.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center