Send to

Choose Destination
Thyroid. 1999 Aug;9(8):837-43.

Developmental and hormonal regulation of thermosensitive neuron potential activity in rat brain.

Author information

Nagasaki University School of Medicine, Japan.


To understand the involvement of thyroid hormone on the postnatal development of hypothalamic thermosensitive neurons, we focused on the analysis of thermosensitive neuronal activity in the preoptic and anterior hypothalamic (PO/AH) regions of developing rats with and without hypothyroidism. In euthyroid rats, the distribution of thermosensitive neurons in PO/AH showed that in 3-week-old rats (46 neurons tested), 19.5% were warm-sensitive and 80.5% were nonsensitive. In 5- to 12-week-old euthyroid rats (122 neurons), 33.6% were warm-sensitive and 66.4% were nonsensitive. In 5- to 12-week-old hypothyroid rats (108 neurons), however, 18.5% were warm-sensitive and 81.5% were nonsensitive. Temperature thresholds of warm-sensitive neurons were lower in 12-week-old euthyroid rats (36.4+/-0.2 degrees C, n = 15, p<0.01,) than in 3-week-old and in 5-week-old euthyroid rats (38.5+/-0.5 degrees C, n = 9 and 38.0+/-0.3 degrees C, n = 15, respectively). The temperature thresholds of warm-sensitive neurons in 12-week-old hypothyroid rats (39.5+/-0.3 degrees C, n = 8) were similar to that of warm-sensitive neurons of 3-week-old raats (euthyroid and hypothyroid). In contrast, there was no difference in the thresholds of warm-sensitive neurons between hypothyroid and euthyroid rats at the age of 3-5 weeks. In conclusion, monitoring the thermosensitive neuronal tissue activity demonstrated the evidence that thyroid hormone regulates the maturation of warm-sensitive hypothalamic neurons in developing rat brain by electrophysiological analysis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center