Sodium-hydrogen exchange and platelet function

J Thromb Thrombolysis. 1999 Jul;8(1):15-24. doi: 10.1023/a:1008986329267.

Abstract

On stimulation of platelets with agonists, for example, thrombin, a rapid rise in intracellular pH is observed. This alkalinization is mediated by an increase in transport activity of the Na(+)/H(+) exchanger isoform NHE1. In addition to this Na(+)/H(+) exchange mechanism, platelets express bicarbonate/chloride exchangers, which also contribute to pH(i) homeostasis. The main functions of NHE1 in platelets include pH(i) control, volume regulation, and participation in cell signaling. The isoform NHE1 is highly sensitive toward inhibition by EIPA, Hoe694, and Hoe642. The regulation of NHE1 activity is complex and is not completely understood. It includes the MAP kinase cascade, the Ca/calmodulin system, several heterotrimeric G proteins (Galpha12, Galpha13, Galphaq, and Galphai), small G proteins (ras, cdc42, rhoA), and downstream kinases (e.g., p160ROCK). Volume challenges stimulate tyrosine phosphorylation of cytoplasmic proteins, which ultimately activate NHE1. Thrombin, thromboxane, platelet-activating factor, angiotensin II, endothelin, phorbol ester, and Ca(2+) ionophors stimulate NHE1 activity in platelets. Blockade of platelet NHE1 can inhibit platelet activation. With the development of highly specific NHE1 inhibitors, detailed investigation of the relationships between NHE1 activity and platelet activation now becomes feasible.

Publication types

  • Review

MeSH terms

  • Animals
  • Blood Platelets / physiology*
  • Humans
  • Ion Transport / physiology
  • Platelet Activation / physiology*
  • Signal Transduction / physiology
  • Sodium-Hydrogen Exchangers / physiology*

Substances

  • Sodium-Hydrogen Exchangers