Send to

Choose Destination
J Theor Biol. 1999 Sep 7;200(1):19-37.

Epigenetic inheritance, genetic assimilation and speciation.

Author information

Department of Plant Taxonomy and Ecology, Loránd Eötvös University, Budapest, Ludovika 2, H-1083, Hungary.


Epigenetic inheritance systems enable the environmentally induced phenotypes to be transmitted between generations. Jablonka and Lamb (1991, 1995) proposed that these systems have a substantial role during speciation. They argued that divergence of isolated populations may be first triggered by the accumulation of (heritable) phenotypic differences that are later followed and strengthened by genetic changes. The plausibility of this idea is examined in this paper. At first, we discuss the "exploratory" behaviour of an epigenetic inheritance system on a one peak adaptive landscape. If a quantitative trait is far from the optimum, then it is advantageous to induce heritable phenotypic variation. Conversely, if the genotypes get closer to the peak, it is more favorable to canalize the phenotypic expression of the character. This process would lead to genetic assimilation. Next we show that the divergence of heritable epigenetic marks acts to reduce or to eliminate the genetic barrier between two adaptive peaks. Therefore, an epigenetic inheritance system can increase the probability of transition from one adaptive state to another. Peak shift might be initiated by (i) slight changes in the inducing environment or by (ii) genetic drift of the genes controlling epigenetic variability. Remarkably, drift-induced transition is facilitated even if phenotypic variation is not heritable. A corollary of our thesis is that evolution can proceed through suboptimal phenotypic states, without passing through a deep adaptive valley of the genotype. We also consider the consequences of this finding on the dynamics and mode of reproductive isolation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center