Format

Send to

Choose Destination
Biochem J. 1999 Sep 15;342 Pt 3:697-705.

Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement of SHIP-2 in negative signalling of B-cells.

Author information

1
Interdisciplinary Research Institute (IRIBHN), Université Libre de Bruxelles, Campus Erasme, Building C, 808 Route de Lennik, 1070 Brussels, Belgium.

Abstract

The termination of activation signals is a critical step in the control of the immune response; perturbation of inhibitory feedback pathways results in profound immune defects culminating in autoimmunity and overwhelming inflammation. FcgammaRIIB receptor is a well described inhibitory receptor. The ligation of B-cell receptor (BCR) and FcgammaRIIB leads to the inhibition of B-cell activation. Numerous studies have demonstrated that the SH2-domain-containing inositol 5-phosphatase SHIP (referred hereto as SHIP-1) is essential in this process. The cDNA encoding a second SH2-domain-containing inositol 5-phosphatase, SHIP-2, has been cloned [Pesesse, Deleu, De Smedt, Drayer and Erneux (1997) Biochem. Biophys. Res. Commun. 239, 697-700]. Here we report the distribution of SHIP-2 in mouse tissues: a Western blot analysis of mouse tissues reveals that SHIP-2 is expressed in both haemopoietic and non-haemopoietic cells. In addition to T-cell and B-cell lines, spleen, thymus and lung are shown to coexpress SHIP-1 and SHIP-2. Moreover, SHIP-2 is detected in fibroblasts, heart and different brain areas. SHIP-2 shows a maximal tyrosine phosphorylation and association to Shc after ligation of BCR to FcgammaRIIB but not after stimulation of BCR alone. Our results therefore suggest a possible role for SHIP-2 in the negative regulation of immunocompetent cells.

PMID:
10477282
PMCID:
PMC1220512
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center