Format

Send to

Choose Destination
Int J Radiat Oncol Biol Phys. 1999 Aug 1;45(1):171-80.

Oxygen tension measurements of tumors growing in mice.

Author information

1
Department of Radiation Oncology, Stanford University School of Medicine, CA 94305-5468, USA.

Abstract

PURPOSE:

Clinical studies using the Eppendorf histograph have shown that patients whose tumors have a low pO2 have worse local control after radiotherapy, and have higher metastatic rates. Because preclinical studies of methods of overcoming, or exploiting, hypoxia generally use transplanted tumors in mice, we have compared the oxygenation of mouse tumors with human tumors to determine the appropriateness of the transplanted mouse model for such preclinical studies.

METHODS AND MATERIALS:

We evaluated the oxygenation status of subcutaneous (s.c.) tissue and of 12 intradermally (i.d.)- and 7 s.c.-growing mouse or human transplanted tumors in mice using the Eppendorf histograph, and compared the values obtained with measurements of human head and neck nodes.

RESULTS:

The normal tissue pO2 profile of air-breathing mice showed a nearly Gaussian distribution (38.2+/-14.9 mmHg). Breathing 10% O2 or carbogen resulted in dramatic changes in normal tissue oxygenation. Tumors growing intradermally in the back of air-breathing mice were extremely hypoxic and resistant to expected changes in oxygenation (carbogen breathing, size, and use of anesthetics). Tumors growing s.c. in the foot showed higher oxygen profiles with marked changes in oxygenation when exposing the animals to different levels of oxygen. However, the oxygenation of the mouse tumors transplanted in either site was only a fraction of that of the majority of human tumors.

CONCLUSION:

Experimental mouse tumors are markedly hypoxic, with median values of 10-20% of those of human tumors. Hence, mouse tumors are probably good models for the most hypoxic human tumors that respond poorly to radiotherapy; however, caution has to be exercised in extrapolating data from mouse to man.

PMID:
10477021
DOI:
10.1016/s0360-3016(99)00157-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center